Archivi tag: future learning

Remote Feature Learning for Mobile Re-Identification

This work introduces a novel method for person re-identification using embedded smart cameras. State-of-theart methods address the re-identification problem using global and local features, metric learning and feature transformation algorithms. Such methods require advanced systems with high computational capabilities. Nowadays, there is a growing interest in security applications using embedded cameras. Motivated by this we propose to study a new system that addresses the challenges posed by the reidentification problem using devices (e.g. smartphones, etc.) that have limited resources. In this work we introduce a novel client-server system that exploits a feature learning method to achieve a two-fold objective: (i) maximize the re-identification performance over time and (ii) reduce the required computational costs. In the training phase, state-of-the-art features are selected considering both the device capabilities and re-identification performance. During the detection phase, the re-identification performance are maximized by selecting the best features for a given input image. To demonstrate the performance of the proposed method we conduct the experiments using different mobile devices. Statistics about feature extraction and feature matching are presented together with re-identification results.

system architecture

M. Vernier, N. Martinel, C. Micheloni, G.L. Foresti, Remote Feature Learning for Mobile Re-Identification, International Conference on Distributed Smart Cameras, Palm Spring CA, USA, October 29 – November 1, 2013.